Hukum Kepler 2Suatu garis khayal yang menghubungkan matahari dengan planet menyapu luas juring yang sama dalam selang waktu yang sama
Hukum Kepler yang kedua memberikan implikasi mengenai kecepatan planet yang berbeda-beda pada saat mengelilingi matahari. Jika jarak planet ke matahari dekat maka kecepatannya besar dibandingkan ketika jaraknya dekat
Hukum Kepler 3Kuadrat periode revolusi planet sebanding dengan pangkat tiga setengah sumbu panjang orbitnya untuk semua planet
Jika diubah kedalam rumus matematik maka persamaannya menjadi :
Atau
Dimana T adalah waktu yang diperlukan oleh planet untuk mengelilingi matahari (disebut periode planet) dan a adalah setengah sumbu panjang orbit : a = (perihelion + aphelion)/2.
Jika hukum ini diterapkan pada data planet-planet, maka kita akan peroleh tabel berikut ini :
Perbandingan yang tetap dalam Hukum Kepler 3 memang berlaku untuk tiap planet.
Sekitar setengah abad kemudian, ditahun 1687, Newton merumuskan Hukum Gravitasi Universal melalui persamaan :
Melalui mengotak-atik persamaannya ini, ternyata kita dapat menghasilkan ketiga Hukum Kepler, sehingga bisa dikatakan bahwa Hukum Kepler adalah kasus dari Hukum yang lebih universal, yaitu Hukum Gravitasi. Bahkan konstata perbandingan planet dapat ditentukan dari Persamaan Gravitasi ini. Karena itu Hukum Kepler 3 yang lengkap adalah :
Dimana G adalah konstanta gravitasi (yang nilainya ditentukan sekitar seabad kemudian (1798) oleh Cavedish, G = 6,672 x 10^-11 Nm^2kg^-2) dan M1 maupun M2 adalah massa kedua benda yang saling berinteraksi dengan gaya gravitasi.
Dalam soal-soal olimpiade, jarang sekali digunakan satuan MKS (meter, kilogram, sekon), tetapi menggunakan satuan-satuan yang biasanya dipakai dalam astronomi. Pada soal-soal dengan kasus Hukum Kepler, maka jenis soal yang sering muncul ada tiga tipe, yaitu :
Soal Tipe 1 : Benda pertama (sebagai pusat) adalah matahari dan benda yang mengorbit adalah planet, asteroid, komet atau pesawat ruang angkasa. Untuk jenis tipe 1 ini satuan yang digunakan biasanya jarak dalam SA (Satuan Astronomi) dan waktu orbit/periode dalam tahun. Jika demikian halnya, maka rumus Kepler 3 dapat menjadi sangat sederhana, yaitu :
Dan ternyata konstanta di suku sebelah kanan dengan ‘ajaibnya’ memiliki nilai sama dengan 1, maka :
Soal Tipe 2 : Benda pertama adalah planet (yang ada di tata surya) dan benda kedua adalah satelit alamnya atau satelit buatan yang mengorbit planet tersebut. Satuan yang biasanya dipakai untuk soal jenis ini adalah massa planet dalam massa matahari, periode orbit dalam hari dan jarak dalam km. Untuk tipe ini rumus Kepler 3 bisa diubah menjadi :
Soal Tipe 3 : Benda yang terlibat adalah dua buah bintang dalam sistem bintang ganda. Untuk kasus bintang ganda ini biasanya massa bintang dalam massa matahari dan periode orbit dalam tahun, maka rumus Kepler 3-nya sama saja dengan soal tipe 1.
Jika ternyata ada soal tentang Hukum Kepler 3 yang bukan tipe-tipe di atas, maka haruslah menggunakan rumus Kepler 3 yang aslinya.
Supaya lebih jelas lagi, silahkan mengerjakan soal-soal olimpiade tentang Hukum Kepler yang ada
disini.